Core Mathematics C2 Paper I

www.my.mainscloud.com

1. The sequence $u_1, u_2, u_3, ...$ is defined by

$$u_n = 2^n + kn$$

where k is a constant.

Given that $u_1 = u_3$,

- (i) find the value of k, [3]
- (ii) find the value of u_5 . [2]
- **2.** Given that

$$y = 2x^{\frac{3}{2}} - 1,$$

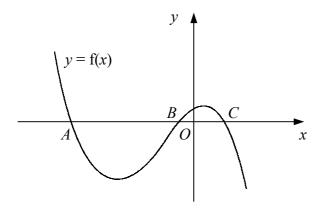
find

$$\int y^2 \, \mathrm{d}x. \tag{6}$$

- 3. (i) Sketch the curve $y = \sin x^{\circ}$ for x in the interval $-180 \le x \le 180$. [2]
 - (ii) Sketch on the same diagram the curve $y = \sin(x 30)^\circ$ for x in the interval $-180 \le x \le 180$. [2]
 - (iii) Use your diagram to solve the equation

$$\sin x^{\circ} = \sin (x - 30)^{\circ}$$

for x in the interval $-180 \le x \le 180$. [2]


4. *(i)* Solve the inequality

$$x^2 - 13x + 30 < 0. ag{3}$$

(ii) Hence find the set of values of y such that

$$2^{2y} - 13(2^y) + 30 < 0. ag{3}$$

5.

The diagram shows the curve y = f(x) where

$$f(x) = 4 + 5x + kx^2 - 2x^3,$$

and k is a constant.

The curve crosses the x-axis at the points A, B and C.

Given that A has coordinates (-4, 0),

(i) show that
$$k = -7$$
, [2]

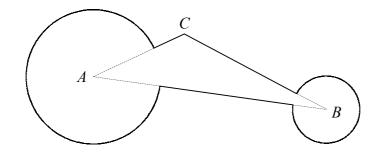
(ii) find the coordinates of
$$B$$
 and C . [5]

6. Given that

$$f'(x) = 5 + \frac{4}{x^2}, \quad x \neq 0,$$

(i) find an expression for f(x).

[3]


Given also that

$$f(2) = 2f(1),$$

$$(ii) \quad \text{find } f(4). \tag{5}$$

Turn over

7.

The diagram shows a design painted on the wall at a karting track. The sign consists of triangle ABC and two circular sectors of radius 2 metres and 1 metre with centres A and B respectively.

Given that AB = 7 m, AC = 3 m and $\angle ACB = 2.2$ radians,

- (i) find the size of $\angle ABC$ in radians to 3 significant figures, [2]
- (ii) show that $\angle BAC = 0.588$ radians to 3 significant figures, [2]
- (iii) find the area of triangle ABC, [2]
- (iv) find the area of the wall covered by the design. [4]
- 8. The finite region R is bounded by the curve $y = 1 + 3\sqrt{x}$, the x-axis and the lines x = 2 and x = 8.
 - (i) Use the trapezium rule with three intervals, each of width 2, to estimate to 3 significant figures the area of *R*. [5]
 - (ii) Use integration to find the exact area of R in the form $a + b\sqrt{2}$. [5]
 - (iii) Find the percentage error in the estimate made in part (a). [2]
- **9.** The first two terms of a geometric progression are 2 and x respectively, where $x \ne 2$.
 - (i) Find an expression for the third term in terms of x. [3]

The first and third terms of arithmetic progression are 2 and x respectively.

(ii) Find an expression for the 11th term in terms of x. [3]

Given that the third term of the geometric progression and the 11th term of the arithmetic progression have the same value,

- (iii) find the value of x, [3]
- (iv) find the sum of the first 50 terms of the arithmetic progression. [3]